lunes, 4 de abril de 2011

ALTERNATIVAS DE SOLUCION

Soluciones para generar electricidad limpia
Las estrategias para poner en práctica las tecnologías de bajo carbono deben ser innovadoras, si se desea lograr seguridad energética y un clima estable para el 2050. Esta transferencia de la energía planetaria debe incluir una combinación de tecnologías limpias como la hulla descarbonizada, el secuestro de carbono, las células energéticas, la bioenergía y centrales eléctricas ultraeficientes propulsadas por gas.

Lewis Milford es presidente de Clean Energy Group, una de las principales organizaciones estadounidenses sin fines de lucro dedicada a novedosos programas de tecnología, finanzas y políticas enfocados en el cambio climático y la energía limpia. Allison Schumacher es directora de proyectos de la firma.
Es necesario que haya una innovación masiva, sin precedentes, para que se pueda desarrollar, comercializar, introducir en el mercado y utilizar en gran escala las tecnologías de bajo carbono, que revolucionarán al mundo.
Los mercados para la energía limpia han crecido tremendamente en los años recientes, pero representan solamente una fracción en lo que respecta a una solución del calentamiento global, la que depende de que haya una transición radical hacia un futuro de bajo carbono.
La energía limpia incluye por lo general las tecnologías renovables convencionales: la producción de energía solar, eólica, biomasa, termo-oceánica, la marea y las olas, geotérmica, células energéticas y las tecnologías de almacenamiento y conversión energética relacionadas.
Pero se necesita una innovación extensa en la tecnología del bajo carbono. Debemos aumentar en forma masiva el uso de estas tecnologías renovables y avanzar con las opciones de bajo carbono, como la hulla descarbonizada, el secuestro de carbono, la producción de energía fósil de eficiencia ultra elevada, las células energéticas, la bioenergía y los derivados de la geonómica, la nanotecnología y los terrenos relacionados.
Además, las normas actuales para los recursos energéticos y el clima, solas, no pueden impulsar los mercados para la energía limpia en la escala o al ritmo necesario para solidificar la seguridad energética y estabilizar el clima para el 2050. Debemos ser más ingeniosos en utilizar nuevas estrategias innovadoras para estas opciones de bajo carbono. Asimismo, las estructuras actuales de financiación y comercialización de las nuevas tecnologías no están abasteciendo al mercado con estas tecnologías de bajo carbono tan necesarias.
Solamente si enfrentamos simultáneamente el doble reto de acelerar el ritmo de la innovación en la tecnología de bajo carbono y crear una financiación y comercialización en gran escala podremos lograr la transformación de la energía planetaria.
Soluciones para la tecnología de bajo carbono
Además de las energías renovables—como la fotovoltaica solar, la energía eólica y la oceánica—y las tecnologías de eficiencia, las prometedoras tecnologías de bajo carbono incluyen las siguientes:
Hulla descarbonizada: El ciclo combinado de gasificación integrada (Integrated Gasification Combined Cycle [IGCC]) representa una nueva generación de centrales eléctricas por carbón, las que son tecnológicamente superiores y ambientalmente preferibles a las centrales convencionales. Esto se debe a su habilidad de gasificar el carbón, reduciendo de esta manera los niveles de azufre, óxido de nitrógeno, las partículas y las emisiones de mercurio antes de la combustión. Las centrales IGCC reducen también en forma significativa las emisiones de bióxodo de carbono y se las puede configurar para capturar el carbono, eliminando con ello la limpieza final.
La hulla se puede descarbonizar de tres maneras: por medio de depuradores instalados en el extremo de la tubería, el secuestro, y el ciclo combinado de gasificación integrada (o IGCC además del secuestro). Los tres métodos de descarbonización se ofrecen ya comercialmente, pero necesitan ser producidos y aplicados en grandes cantidades para competir y terminar con la construcción de nuevas centrales por carbón convencionales. Esto se aplica especialmente a los países en vías de desarrollo, en los que se prevé un gran aumento en las centrales eléctricas convencionales de carbón. En un mundo futuro en el que se limitará el uso del carbón, la central eléctrica preferida podría ser aquella que utilice el método IGCC.
Centrales eléctricas ultraeficientes propulsadas por gas: Las centrales propulsadas por gas natural que utilizan turbinas avanzadas de ciclo combinado son más eficientes y producen menores emisiones de gases de efectos de invernadero que las centrales convencionales propulsadas por carbón. En varias ocasiones en 2005, el gas natural fue un combustible más costoso y volátil que el carbón, lo que hacía que el costo y la economía fueran un factor crítico. La forma en que se desarrollen los abastecimientos futuros de gas natural puede afectar cualquier diferencia en el costo. Puede necesitarse incentivos para aumentar la competitividad de los precios para estimular la utilización extensa de la tecnología del gas ultra eficiente.
Células energéticas: Las células energéticas convierten el hidrógeno y el oxígeno a electricidad, con sólo agua y calor (sin gases de invernadero) como productos derivados. Esta tecnología es prometedora para muchas aplicaciones, especialmente para producir energía distribuida y limpia en lugares con cargas eléctricas sensibles, como los aeropuertos, bancos, centros de información, estaciones de primera respuesta a emergencias, hospitales y centrales telefónicas.
Las células energéticas en el sitio mismo ofrecen seguridad energética por medio de electricidad sostenida y de alta calidad. Pueden operar con gas natural así como combustibles renovables. Entre las barreras a la tecnología de las células energéticas figuran un costo de capital inicial relativamente alto, requisitos de mantenimiento y operación, el costo de producir el combustible hidrógeno y temas de almacenamiento y transporte del combustible. Para lograr su adopción generalizada, debe considerarse las células energéticas para sitios críticos como los hospitales y otros lugares donde la interrupción de la energía eléctrica puede tener consecuencias graves. Para las instalaciones de este tipo, la diferencia en el costo podría ser una barrera menor. También se debe superar otras barreras a una mayor penetración de las células energéticas a nivel de los servicios públicos, como las tarifas exorbitantes que se cobran para acceder a la red eléctrica cuando se desactiva una célula energética por razones de mantenimiento.
Biomasa y biocombustibles celulósicos: Al aumentar el interés en la producción y utilización de los biocombustibles, se hace un uso mayor de las tecnologías de la biomasa, como los digestores anaeróbicos y los gasificadores, para producir energía de los cultivos, los desechos de cultivos y el estiércol.
 

Sin embargo, el mercado de la bioenergía es relativamente naciente y le falta mucho para alcanzar un punto que señale una adopción rápida y generalizada de las tecnologías de la biomasa y los biocombustibles. Además, desde un punto de vista del bajo carbono, se reconoce ampliamente que es preferible utilizar la biomasa celulósica (con base en la planta) que cosechar cultivos como el maíz para producir biocombustibles, debido a que la cosecha y el transporte de los cultivos aumentan las emisiones de bióxido de carbono. Podría ser de importancia crítica estudiar la geonómica para avanzar en esta tecnología, pero la misma necesita todavía ser aprovechada para desarrollar y comercializar biocombustibles y sistemas energéticos que produzcan alta energía.
Secuestro: el capturar y encerrar las emisiones excesivas del carbono en lugar de descargarlas en la atmósfera—pertenece a dos categorías: (1) la categoría biológica, con la que se captura el carbono en plantas que se sabe que absorben mucho carbono y que son plantadas en lugares específicos; y (2) la categoría geológica, con la que se inyecta el carbono en formaciones rocosas. Se está explorando una multitud de tecnologías para ambos tipos de secuestro, pero no existe todavía ninguna que pueda utilizarse en forma generalizada. Todos los interesados, públicos y privados, deben emprender medidas más enérgicas para abordar rápidamente las varias cuestiones científicas y técnicas concernientes a cómo almacenar y capturar mejor el carbono por períodos de tiempo prolongados.
Probablemente hay muchas otras tecnologías de bajo carbono todavía por inventarse que podrán alterar el status quo de las tecnologías energéticas más tradicionales. La dificultad no radica solamente en la invención, pero también en establecer y expandir rápidamente los mercados de las tecnologías de bajo carbono.
Acelerar la innovación
Existen en el horizonte múltiples retos y oportunidades para la tecnología del bajo carbono. Los expertos concuerdan en que el éxito del desarrollo de una energía limpia requerirá que se preste atención, no solamente en los adelantos en las ciencias básicas y aplicadas, sino que también en la dinámica comercial que rodea a las tecnologías surgentes.
Los países del Grupo de Ocho (G8) reconocieron esta necesidad apremiante de innovación tecnológica y su comercialización cuando iniciaron en julio de 2005 en Gleneagles, Escocia, el Diálogo sobre cambio climático, energía limpia y desarrollo sostenible. El Banco Mundial desarrolló un "marco de inversiones" para que sirva de piedra angular en este diálogo, el que reconoce la necesidad crítica de una innovación tecnológica para sostener un aumento masivo en las inversiones, la investigación y el desarrollo, y la comercialización de las tecnologías de bajo carbono.
El informe sobre el marco de inversiones del Banco Mundial concluye que las actuales políticas y la financiación por fuentes públicas y privadas no son suficientes para promover las tecnologías que reducirán el carbono con el fin de estabilizar las emisiones.

No hay comentarios:

Publicar un comentario